Comparación Crítica de Normas MPPT en Sistemas Fotovoltaicos: EN 50530, IEC 62816 y ASTM E2848 Critical Comparison of MPPT Standards in Photovoltaic Systems: EN 50530, IEC 62816, and ASTM E2848

Contenido principal del artículo

Carlos David Amaya Jaramillo
Adriano Efraín Pérez Toapanta

Resumen

Se han publicado más de cien algoritmos de seguimiento del punto de máxima potencia (MPPT), pero la evaluación de su desempeño sigue siendo heterogénea. Las normas EN 50530, IEC 62816 y ASTM E2848 constituyen los principales estándares internacionales que especifican cómo cuantificar la calidad del seguimiento. No obstante, presentan discrepancias críticas en su alcance, métricas, perfiles de prueba y tratamiento de incertidumbres. Este artículo lleva a cabo un análisis comparativo detallado que identifica 14 criterios de evaluación, examina minuciosamente la formulación matemática de cada indicador de rendimiento y analiza las limitaciones que dificultan una clasificación clara de los algoritmos. Entre los principales resultados se encuentran: (i) la única norma que exige rampas de irradiancia específicas es la EN 50530 (0,5–100 W/(m² s)) para pruebas dinámicas; (ii) la norma IEC 62816 define la "pérdida de energía por seguimiento" (εTL) y establece una clasificación de A a E; (iii) la norma ASTM E2848 emplea regresión múltiple para calcular la potencia esperada, un enfoque que disminuye la precisión en condiciones dinámicas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Amaya Jaramillo, C. D., & Pérez Toapanta, A. E. (2025). Comparación Crítica de Normas MPPT en Sistemas Fotovoltaicos: EN 50530, IEC 62816 y ASTM E2848: Critical Comparison of MPPT Standards in Photovoltaic Systems: EN 50530, IEC 62816, and ASTM E2848. Boletín Científico Ideas Y Voces, 5(3), Pág. 233 – 250. https://doi.org/10.60100/bciv.v5i3.251
Sección
Artículos

Citas

Bhatnagar, P., & Nema, R. K. (2013). Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. Renewable and Sustainable Energy Reviews, 23, 224–241. https://doi.org/10.1016/J.RSER.2013.02.011

Bhatti, S., Khan, A. R., Zoha, A., Hussain, S., & Ghannam, R. (2024). A Machine Learning Frontier for Predicting LCOE of Photovoltaic System Economics. Advanced Energy and Sustainability Research, 5(8). https://doi.org/10.1002/aesr.202300178

Bortoni, E. C., Guardia, E. C., Guerrini, A. B., Lopes, E. A. S., Ferreira, T. V. V., & Neto, R. A. (2022). Probabilistic and Possibilistic Approaches for LCOE Appraisal of Renewable Generation. 2022 IEEE Power & Energy Society General Meeting (PESGM), 01–05. https://doi.org/10.1109/PESGM48719.2022.9917132

Chmielowiec, K., Topolski, Ł., Piszczek, A., Rodziewicz, T., & Hanzelka, Z. (2022). Study on Energy Efficiency and Harmonic Emission of Photovoltaic Inverters. Energies, 15(8). https://doi.org/10.3390/en15082857

Deline, C., Dobos, A., Janzou, S., Meydbray, J., & Donovan, M. (2013). A simplified model of uniform shading in large photovoltaic arrays. Solar Energy, 96, 274–282. https://doi.org/10.1016/J.SOLENER.2013.07.008

Dirnberger, D., Blackburn, G., Müller, B., & Reise, C. (2015). On the impact of solar spectral irradiance on the yield of different PV technologies. Solar Energy Materials and Solar Cells, 132, 431–442. https://doi.org/10.1016/J.SOLMAT.2014.09.034

Elbaksawi, O., Elminshawy, N. A. S., Diab, S., Eltamaly, A. M., Mahmoud, A., & Elhadidy, H. (2024). Innovative metaheuristic algorithm with comparative analysis of MPPT for 5.5 kW floating photovoltaic system. Process Safety and Environmental Protection, 185, 1072–1088. https://doi.org/10.1016/J.PSEP.2024.03.082

Eltawil, M. A., & Zhao, Z. (2013). MPPT techniques for photovoltaic applications. Renewable and Sustainable Energy Reviews, 25, 793–813. https://doi.org/10.1016/J.RSER.2013.05.022

Endiz, M. S., Gökkuş, G., Coşgun, A. E., & Demir, H. (2025). A Review of Traditional and Advanced MPPT Approaches for PV Systems Under Uniformly Insolation and Partially Shaded Conditions. In Applied Sciences (Switzerland) (Vol. 15, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/app15031031

Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2017). Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems. CRC Press. https://doi.org/10.1201/b14303

Fusch, P., Fusch, G. E., & Ness, L. R. (2018). Denzin’s Paradigm Shift: Revisiting Triangulation in Qualitative Research. Journal of Social Change, 10(1). https://doi.org/10.5590/josc.2018.10.1.02

Ishaque, K., Salam, Z., Amjad, M., & Mekhilef, S. (2012). An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Transactions on Power Electronics, 27(8), 3627–3638. https://doi.org/10.1109/TPEL.2012.2185713

Kamarzaman, N. A., & Tan, C. W. (2014). A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable and Sustainable Energy Reviews, 37, 585–598. https://doi.org/10.1016/J.RSER.2014.05.045

Kratochvil, J., Boyson, W., & King, D. (2004). Photovoltaic array performance model. https://doi.org/10.2172/919131

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. https://doi.org/10.2307/2529310

Lo Brano, V., Orioli, A., Ciulla, G., & Di Gangi, A. (2010). An improved five-parameter model for photovoltaic modules. Solar Energy Materials and Solar Cells, 94(8), 1358–1370. https://doi.org/10.1016/j.solmat.2010.04.003

Logeswaran, T., & SenthilKumar, A. (2014). A Review of Maximum Power Point Tracking Algorithms for Photovoltaic Systems under Uniform and Non-uniform Irradiances. Energy Procedia, 54, 228–235. https://doi.org/10.1016/J.EGYPRO.2014.07.266

Marion, B., Adelstein, J., Boyle, K., Hayden, H., Hammond, B., Fletcher, T., Canada, B., Narang, D., Kimber, A., Mitchell, L., Rich, G., & Townsend, T. (2005). Performance parameters for grid-connected PV systems. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, 2005., 1601–1606. https://doi.org/10.1109/PVSC.2005.1488451

Ordóñez, F., Fasquelle, T., Dollet, A., & Vossier, A. (2023). Making solar electricity dispatchable: A technical and economic assessment of the main conversion and storage technologies. IScience, 26(11). https://doi.org/10.1016/j.isci.2023.108028

Peiris, K., Elphick, S., David, J., & Robinson, D. (2024). Impact of Multiple Grid-Connected Solar PV Inverters on Harmonics in the High-Frequency Range. Energies , 17(11). https://doi.org/10.3390/en17112639

Pilawa-Podgurski, R. C. N., & Perreault, D. J. (2013). Submodule integrated distributed maximum power point tracking for solar photovoltaic applications. IEEE Transactions on Power Electronics, 28(6), 2957–2967. https://doi.org/10.1109/TPEL.2012.2220861

Sangwongwanich, A., & Blaabjerg, F. (2019). Mitigation of Interharmonics in PV Systems With Maximum Power Point Tracking Modification. IEEE Transactions on Power Electronics, 34(9), 8279–8282. https://doi.org/10.1109/TPEL.2019.2902880

Verma, D., Nema, S., Shandilya, A. M., & Dash, S. K. (2016a). Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 54, 1018–1034. https://doi.org/10.1016/J.RSER.2015.10.068

Verma, D., Nema, S., Shandilya, A. M., & Dash, S. K. (2016b). Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 54, 1018–1034. https://doi.org/10.1016/J.RSER.2015.10.068

Wiegmann, P. M., de Vries, H. J., & Blind, K. (2017). Multi-mode standardisation: A critical review and a research agenda. Research Policy, 46(8), 1370–1386. https://doi.org/10.1016/J.RESPOL.2017.06.002