Use of remotely operated vehicles (ROVs) in characterizing the space factor for naval operations planning Empleo de vehículos operados de forma remota (ROV) en la caracterización del factor espacio para la planificación de las operaciones navale

Main Article Content

Cesar Israel Mendoza Moyón

Abstract

The essay examines how the use of Remotely Operated Vehicles (ROVs) can strengthen the anti-submarine warfare (ASW) capabilities of the Ecuadorian Navy through the characterization of the underwater spatial factor and the integration of data into the tactical picture. Based on a technical and doctrinal review, it demonstrates that ROVs—initially developed for scientific research—possess significant military potential due to their precision and adaptability to complex environments. Equipped with multibeam sonar, cameras, and environmental sensors, they enable real-time oceanographic data collection and support the preparation of the operational environment. Their use complements hull-mounted sonars in acoustically restrictive areas such as the Gulf of Guayaquil, improving the localization and classification of submarine contacts. Furthermore, when integrated into networks alongside other ASW platforms and sensors, they expand surveillance coverage and reduce risk to the main surface force. Ultimately, their implementation aligns with the strategic defense and modernization plans, providing a dual-use tool for maritime surveillance, scientific research, and technological advancement in anti-submarine operations

Downloads

Download data is not yet available.

Article Details

How to Cite
Mendoza Moyón, C. I. (2025). Use of remotely operated vehicles (ROVs) in characterizing the space factor for naval operations planning: Empleo de vehículos operados de forma remota (ROV) en la caracterización del factor espacio para la planificación de las operaciones navale. Boletín Científico Ideas Y Voces, 5(3), Pág. 374–394. https://doi.org/10.60100/bciv.v5i3.263
Section
Articles

References

Agarwala, N. (2022). Integrating UUVs for naval applications. Maritime Technology and Research, 4(3), 254470–254470. https://doi.org/10.33175/mtr.2022.254470

Allard, Y., & Shahbazian, E. (2014). Unmanned underwater vehicle (UUV) information study. https://apps.dtic.mil/sti/html/tr/AD1004191/

ARE AGUENA. (2004). Manual de empleo de medios en las operaciones navales.

ARE CODESC. (2012). CODESC-PROTACE-01-2012, PROCEDIMIENTOS TÁCTICOS DE LA ESCUADRA.

ARE COGMAR. (2021). Plan de Gestión Institucional Bicentenario 2022-2033. Armada del Ecuador. Res. COGMAR-CDO-042

Bae, I., & Hong, J. (2023). Survey on the Developments of Unmanned Marine Vehicles: Intelligence and Cooperation. Sensors, 23(10), 4643. https://doi.org/10.3390/s23104643

Baker, K. (2025). US Marines are getting in on Navy submarine hunting. Business Insider. https://www.businessinsider.com/us-marines-are-getting-in-on-navy-submarine-hunting-2025-7

Battaleme, J. (2015). Cambiando el statu quo de la geopolítica internacional: El acceso a los espacios comunes y las estrategias de negación de espacio y antiacceso. 12.

Benson, G. A., Mitchell, P. D., & Henson, B. (2025). Localization of AUVs for Ship Hull Inspection: A Review. IEEE Access. https://ieeexplore.ieee.org/abstract/document/10974976/

Blidberg, R. (2001). The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary. Autonomous Undersea Systems Institute. https://www.researchgate.net/publication/247835516_The_Development_of_Autonomous_Underwater_Vehicles_AUV_A_Brief_Summary

Coba, R. (2016). Afectación del cambio climático en las posibles áreas de empleo de los SS U-209 en la capacidad de detección y evasión. Academia de Guerra Naval.

DOE Project. (2023). ¿Qué es un ROV? https://oceanexplorer.noaa.gov/edu/materials/rov-fact-sheet-ESP.pdf

EC Comando Conjunto de FF.AA. (2020). GUÍA METODOLÓGICA PARA LA MEDICIÓN DE CAPACIDADES ESTRATÉGICAS DE FUERZAS ARMADAS.

EC Comando Conjunto de FF.AA. (2021). Plan Estratégico de las Fuerzas Armadas 2021-2025. Quito: Comando Conjunto de Fuerzas Armadas.

EC MIDENA. (2024). Plan Estratégico de Largo Plazo de la Defensa-PELPD.

Emon, M. E. H., & Sharif Ahad, S. M. N. (2024). Design and construction of an economical underwater remotely operated vehicle (UROV) for surveying underwater portion of ship hull & shallow waterways [Thesis]. http://dspace.mist.ac.bd:8080/xmlui/handle/123456789/859

Freyrie, M. (2023). Uncrewed underwater vehicles: Opportunities and challenges. The Underwater Environment and Europe’s Defence and Security, Istituto Affari Internazionali (IAI). https://www.jstor.org/stable/pdf/resrep51668.5.pdf

Gao, S., Yan, R., Zhao, Z., Ding, W., Dou, M., & Chen, B. M. (2024). Sea-U-Dragon: A Lightweight Unmanned Underwater Vehicle for Robot-Environment Interaction. 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM), 69–74. https://ieeexplore.ieee.org/abstract/document/10673051/

Garzón, D. (2025). Enhancing Antarctic Field Operations: Using Remotely Operated Vehicles (ROVs) for Underwater Inspection of Scientific Equipment. ARE INOCAR.

GDT. (2024, enero 26). Armed and intelligent: The US Navy’s future UUVs - Global Defence Technology | Issue 91 | September 2018. https://defence.nridigital.com/global_defence_technology_sep18/armed_and_intelligent_the_us_navy_s_future_uuvs

Guzmán Montesinos, N. (2018). Multiestatismo, ¿El Futuro de la Guerra Antisubmarina? Revista de Marina Chile, 135(965). https://revistamarina.cl/es/articulo/multiestatismo-el-futuro-de-la-guerra-antisubmarina

Haeggman, M. J., & Spaak, F. (2025). Utveckling av målfarkost för utvärdering av sonarsystem. https://www.diva-portal.org/smash/record.jsf?pid=diva2:1992858

Manley, J. E. (2016). Unmanned Maritime Vehicles, 20 years of commercial and technical evolution. OCEANS 2016 MTS/IEEE Monterey, 1–6. https://doi.org/10.1109/OCEANS.2016.7761377

Martin, B., Tarraf, D., Whitmore, T., DeWeese, J., Kenney, C., Schmid, J., & DeLuca, P. (2019). Advancing Autonomous Systems: An Analysis of Current and Future Technology for Unmanned Maritime Vehicles. RAND Corporation. https://doi.org/10.7249/RR2751

Menacho Piérola, J., Varea Loayza, E., Torres Santa María, A., Bartens Olortegui, M., Morote Somontes, G., Carillo Espinoza, R., Macedo Rodríguez, G., & Martínez Chiapperini, B. (2020). Manual del Navegante.

Molchan, M. (2005). The role of micro-rovs in maritime safety and security. Mochlan Marine Sciences, 44. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5fea0e95ff3471882db9bb8b2212b007172fe19f

Patel, S. (2025). A Comprehensive Review of Unmanned Underwater Vehicles: Technologies, Applications, and Challenges. https://jsiar.com/2025-June/JSIAR-J-25-06111.pdf

Piancastelli, L., Leon-Cardenas, C., & Sali, M. (2025). Technical Effectiveness Considerations on the Replacement of Missiles with Interceptor UAVs. Unmanned Systems, 13(01), 121–136. https://doi.org/10.1142/S2301385025500086

Terrill, E. J., Merrifield, S., Celona, S., McCarthy, R., & Pietruszka, A. (2024). Robotic Exploration of a Historic Deepwater Dumpsite. American Geophysical Union, Ocean Sciences Meeting, 391, DS34A-0391. https://ui.adsabs.harvard.edu/abs/2024AGUOSDS34A0391T/abstract

Tucker, P. (2024, febrero 16). Navy envisions ‘hundreds of thousands’ of drones in the Pacific to deter China. Defense One. https://www.defenseone.com/threats/2024/02/navy-envisions-hundreds-thousands-drones-pacific-deter-china/394266/

Uribe Cáceres, S. (Ed.). (2016). Estrategia marítima, evolución y prospectiva (Primera edición). Escuela Superior de Guerra.

US Join Chiefs of Staff. (2014). Joint Publication 2-01.3. Joint Intelligence Preparation of the Operational Environment.

US Navy. (2025). NIWC Pacific Boosts U.S. Navy’s Next-Gen Ocean Observation. United States Navy. https://www.navy.mil/Press-Office/News-Stories/display-news/Article/4171742/niwc-pacific-boosts-us-navys-next-gen-ocean-observation/

Teledyne Marine. (2024). Principles of CTD Measurement and Data Collection: A Technical Overview [Informe técnico].