Determination of the optimal tilt angle for fixed photovoltaic systems using PVsyst simulation software Determinación del ángulo óptimo de inclinación para sistemas fotovoltaicos fijos mediante software de simulación PVsyst
Main Article Content
Abstract
The efficient design of photovoltaic systems (PV systems) is essential to ensure their long-term profitability and energy performance. This study employs PVsyst, a leading photovoltaic simulation software, as a key tool to support the optimization of fixed-system designs. PVsyst allows accurate modeling of energy production by considering critical factors such as solar radiation, module orientation and tilt, shading, thermal losses, and the electrical characteristics of inverters. Through parametric simulations, the software facilitates informed decision-making that balances energy yield and system cost. In this work, PVsyst was used to determine the optimal tilt angle for a 100 kW fixed PV system located in Guayaquil, Ecuador, where the high solar altitude throughout the year directly influences irradiance capture. Tilt angles between 0° and 20° were evaluated, achieving a maximum annual energy output of 139.40 MWh at 3°, a value consistent with the solar behavior typical of equatorial regions. However, this configuration may not be suitable for systems without active cleaning mechanisms; in such cases, a greater tilt angle should be considered to facilitate rainwater runoff and the natural self-cleaning of the modules
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Alzahrani, M., Rahman, T., Rawa, M., & Weddell, A. (2025). Impact of dust and tilt angle on the photovoltaic performance in a desert environment. Solar Energy, 288. https://doi.org/10.1016/j.solener.2025.113239
Baqir, M., & Channi, H. K. (2021). Analysis and design of solar PV system using Pvsyst software. Materials Today: Proceedings, 48, 1332–1338. https://doi.org/10.1016/j.matpr.2021.09.029
Belmahdi, B., & El Bouardi, A. (2020). Solar potential assessment using PVsyst software in the northern zone of Morocco. Procedia Manufacturing, 46, 738–745. https://doi.org/10.1016/j.promfg.2020.03.104
Dávila, R. N., Vallejo, D. A., Soria, R., & Ordoñez, F. (2020). Evaluación del potencial técnico y económico de la tecnología solar fotovoltaica para micro generación eléctrica en el sector residencial del Distrito Metropolitano de Quito. 17, 80–91.
Foronda-Gutiérrez, L. A., Trejos-Grisales, L. A., & González-Montoya, D. (2022). Evaluación de herramientas computacionales para análisis de sistemas fotovoltaicos. Ingeniería y Competitividad, 24. https://doi.org/10.25100/iyc.v24i2.11516
Islam, M. A., Ali, M. M. N., Benitez, I. B., Sidi Habib, S., Jamal, T., Flah, A., Blazek, V., & El-Bayeh, C. Z. (2025). A comprehensive evaluation of photovoltaic simulation software: A decision-making approach using Analytic Hierarchy Process and performance analysis. Energy Strategy Reviews, 58. https://doi.org/10.1016/j.esr.2025.101663
Izquierdo-Torres, I. F., Pacheco-Portilla, M. G., González-Morales, L. G., & Zalamea-León, E. F. (2019). Photovoltaic simulation considering building integration parameters. Ingenius, 2019(21), 21–31. https://doi.org/10.17163/ings.n21.2019.02
Longares, J. M., García-Jiménez, A., & García-Polanco, N. (2023). Multiphysics simulation of bifacial photovoltaic modules and software comparison. Solar Energy, 257, 155–163. https://doi.org/10.1016/j.solener.2023.04.005
Raji, L., Razak, A. A., & Sharol, A. F. (2025). Comparative assessment of PV simulation tools for a megawatt-scale rooftop solar photovoltaic system in tropical climate. Next Energy, 9. https://doi.org/10.1016/j.nxener.2025.100452
Salima, B., Ibrahim, A., Jamal, M., Ilham, A., & Younes, A. (2025). Sizing and simulation of a photovoltaic installation at the Al-Hoceima desalination plant. Desalination and Water Treatment, 322. https://doi.org/10.1016/j.dwt.2025.101171
Salmi, M., Baci, A. B., Inc, M., Menni, Y., Lorenzini, G., & Al-Douri, Y. (2022). Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria’s M’sila region using PVsyst software. Optik, 262. https://doi.org/10.1016/j.ijleo.2022.169294
Sepúlveda-Oviedo, E. H. (2025). Optimizing PV maintenance: Methods, cleaning frequency, and a selection protocol. In Energy Reports (Vol. 14, pp. 1578–1605). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2025.07.008
Wang, F., Li, R., Zhao, G., Xia, D., & Wang, W. (2024). Simulation test of 50 MW grid-connected “Photovoltaic+Energy storage” system based on pvsyst software. Results in Engineering, 22. https://doi.org/10.1016/j.rineng.2024.102331
Yunus Khan, T. M., Soudagar, M. E. M., Kanchan, M., Afzal, A., Banapurmath, N. R., Akram, N., Mane, S. D., & Shahapurkar, K. (2020). Optimum location and influence of tilt angle on performance of solar PV panels. Journal of Thermal Analysis and Calorimetry, 141(1), 511–532. https://doi.org/10.1007/s10973-019-09089-5
Zafar, L., Abbasi, M. S., Rao, A., Shehryar, & Anwar, A. (2025). Evaluating and mitigating the effects of dust accumulation on photovoltaic panel performance. Results in Engineering, 28. https://doi.org/10.1016/j.rineng.2025.107672
Zhao, W., Han, Z., Wu, Y., & Lu, H. (2025). Numerical simulation of dust deposition influences on building integrated photovoltaic array. Renewable Energy, 250. https://doi.org/10.1016/j.renene.2025.123334