Determination of the optimal tilt angle for fixed photovoltaic systems using PVsyst simulation software Determinación del ángulo óptimo de inclinación para sistemas fotovoltaicos fijos mediante software de simulación PVsyst

Main Article Content

Francisco Ruperto Riccio Anastacio

Abstract

The efficient design of photovoltaic systems (PV systems) is essential to ensure their long-term profitability and energy performance. This study employs PVsyst, a leading photovoltaic simulation software, as a key tool to support the optimization of fixed-system designs. PVsyst allows accurate modeling of energy production by considering critical factors such as solar radiation, module orientation and tilt, shading, thermal losses, and the electrical characteristics of inverters. Through parametric simulations, the software facilitates informed decision-making that balances energy yield and system cost. In this work, PVsyst was used to determine the optimal tilt angle for a 100 kW fixed PV system located in Guayaquil, Ecuador, where the high solar altitude throughout the year directly influences irradiance capture. Tilt angles between 0° and 20° were evaluated, achieving a maximum annual energy output of 139.40 MWh at 3°, a value consistent with the solar behavior typical of equatorial regions. However, this configuration may not be suitable for systems without active cleaning mechanisms; in such cases, a greater tilt angle should be considered to facilitate rainwater runoff and the natural self-cleaning of the modules

Downloads

Download data is not yet available.

Article Details

How to Cite
Riccio Anastacio, F. R. (2025). Determination of the optimal tilt angle for fixed photovoltaic systems using PVsyst simulation software: Determinación del ángulo óptimo de inclinación para sistemas fotovoltaicos fijos mediante software de simulación PVsyst. Boletín Científico Ideas Y Voces, 5(3), Pág. 312–325. https://doi.org/10.60100/bciv.v5i3.255
Section
Articles

References

Alzahrani, M., Rahman, T., Rawa, M., & Weddell, A. (2025). Impact of dust and tilt angle on the photovoltaic performance in a desert environment. Solar Energy, 288. https://doi.org/10.1016/j.solener.2025.113239

Baqir, M., & Channi, H. K. (2021). Analysis and design of solar PV system using Pvsyst software. Materials Today: Proceedings, 48, 1332–1338. https://doi.org/10.1016/j.matpr.2021.09.029

Belmahdi, B., & El Bouardi, A. (2020). Solar potential assessment using PVsyst software in the northern zone of Morocco. Procedia Manufacturing, 46, 738–745. https://doi.org/10.1016/j.promfg.2020.03.104

Dávila, R. N., Vallejo, D. A., Soria, R., & Ordoñez, F. (2020). Evaluación del potencial técnico y económico de la tecnología solar fotovoltaica para micro generación eléctrica en el sector residencial del Distrito Metropolitano de Quito. 17, 80–91.

Foronda-Gutiérrez, L. A., Trejos-Grisales, L. A., & González-Montoya, D. (2022). Evaluación de herramientas computacionales para análisis de sistemas fotovoltaicos. Ingeniería y Competitividad, 24. https://doi.org/10.25100/iyc.v24i2.11516

Islam, M. A., Ali, M. M. N., Benitez, I. B., Sidi Habib, S., Jamal, T., Flah, A., Blazek, V., & El-Bayeh, C. Z. (2025). A comprehensive evaluation of photovoltaic simulation software: A decision-making approach using Analytic Hierarchy Process and performance analysis. Energy Strategy Reviews, 58. https://doi.org/10.1016/j.esr.2025.101663

Izquierdo-Torres, I. F., Pacheco-Portilla, M. G., González-Morales, L. G., & Zalamea-León, E. F. (2019). Photovoltaic simulation considering building integration parameters. Ingenius, 2019(21), 21–31. https://doi.org/10.17163/ings.n21.2019.02

Longares, J. M., García-Jiménez, A., & García-Polanco, N. (2023). Multiphysics simulation of bifacial photovoltaic modules and software comparison. Solar Energy, 257, 155–163. https://doi.org/10.1016/j.solener.2023.04.005

Raji, L., Razak, A. A., & Sharol, A. F. (2025). Comparative assessment of PV simulation tools for a megawatt-scale rooftop solar photovoltaic system in tropical climate. Next Energy, 9. https://doi.org/10.1016/j.nxener.2025.100452

Salima, B., Ibrahim, A., Jamal, M., Ilham, A., & Younes, A. (2025). Sizing and simulation of a photovoltaic installation at the Al-Hoceima desalination plant. Desalination and Water Treatment, 322. https://doi.org/10.1016/j.dwt.2025.101171

Salmi, M., Baci, A. B., Inc, M., Menni, Y., Lorenzini, G., & Al-Douri, Y. (2022). Desing and simulation of an autonomous 12.6 kW solar plant in the Algeria’s M’sila region using PVsyst software. Optik, 262. https://doi.org/10.1016/j.ijleo.2022.169294

Sepúlveda-Oviedo, E. H. (2025). Optimizing PV maintenance: Methods, cleaning frequency, and a selection protocol. In Energy Reports (Vol. 14, pp. 1578–1605). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2025.07.008

Wang, F., Li, R., Zhao, G., Xia, D., & Wang, W. (2024). Simulation test of 50 MW grid-connected “Photovoltaic+Energy storage” system based on pvsyst software. Results in Engineering, 22. https://doi.org/10.1016/j.rineng.2024.102331

Yunus Khan, T. M., Soudagar, M. E. M., Kanchan, M., Afzal, A., Banapurmath, N. R., Akram, N., Mane, S. D., & Shahapurkar, K. (2020). Optimum location and influence of tilt angle on performance of solar PV panels. Journal of Thermal Analysis and Calorimetry, 141(1), 511–532. https://doi.org/10.1007/s10973-019-09089-5

Zafar, L., Abbasi, M. S., Rao, A., Shehryar, & Anwar, A. (2025). Evaluating and mitigating the effects of dust accumulation on photovoltaic panel performance. Results in Engineering, 28. https://doi.org/10.1016/j.rineng.2025.107672

Zhao, W., Han, Z., Wu, Y., & Lu, H. (2025). Numerical simulation of dust deposition influences on building integrated photovoltaic array. Renewable Energy, 250. https://doi.org/10.1016/j.renene.2025.123334